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ABSTRACT 
 

Brain machine interfaces (BMI) are rehabilitation tools in which neural functions, such as walking, talking, hearing and 

seeing are modulated through feedback that is triggered by either decoded external percepts or brain activities. Some of the 

major challenges of BMI as rehabilitation tools involve difficulties in physiological signal analysis. To overcome these 
challenges, signals as well as sensing devices that clearly distinguish various states in patients across time and condition 

are required. In sensing for BMI, characteristics like implantability, spatio-temporal resolution and invasiveness are 

essential. Sensing in BMI is required to either control perception to the brain or actuation from the brain. Hence, this review 
focusses on those that control neuro-motor functions by using brain activity to ameliorate, mitigate or restore bodily function 

in patients with disabilities. In addition, the review proposes future perspectives on sensing for BMI. Even with the surge in 
research on BMI, the major challenge still remains translating research to real-life applications. These transitions have 

mainly been hindered by limitations in sensing technology which this work provides more insight into. It is hoped that future 

BMI applications could adopt paradigms that combine metabolic and electrical activity sensors for acquiring brain 
responses in real-time. This increases spatio-temporal resolution; thus, improving information content and disease 

identification. 
 

Keywords: Bio-signal processing; Brain machine interface; Deep brain stimulation; Feedback algorithms; Neural activity 

measurement. 
 

1. INTRODUCTION 

 
Brain machine interface (BMI) transduces brain signals to 

enable some form of communication between the brain and a 

machine – both machine and brain can take up the role of the 

transmitter and receiver. Fig. 1 depicts the bidirectional 

communication of an idealized BMI system. Generally, there 

are various ways BMIs can be classified: based on: its function, 

level of invasiveness, origin of neural signal and its design 

(Lebedev & Nicolelis, 2017). However, in this review more 

focus will be on the classification of BMI based on function. 

When classified based on functions, they can be broadly 

divided into two categories (Nicolelis, 2001). The first category 

is perception assistive BMI. These are devices that relay on 

sensory information by stimulating relevant regions of brains 

concerned with various perceptions like sound or vision s to 

mimic their neurological function. The second category are 

actuation assistive devices, which are devices that decode 

neural activity in real-time so as to control prosthetics, motor 

disorders, pain and other impairment or disabilities. Among the 

two groups, the former controls perception to the brain based 

on sensory information, while the latter controls actuation to a 

body part or prosthetics based on recorded neural activity from 

the brain.   

Both categories use electrical signals to relay sensory and 

 actuation information respectively (Lebedev & Nicolelis, 

2017). They can also be used to restore, reinforce and facilitate 

human sensory-motor functions (Chaudhary, Birbaumer, & 

Ramos-Murguialday, 2016). Advances in neuroscience have 

led to a surge in BMI research. However, the major challenge 

still remains translating research to real-life applications. These 

transition has mainly been hindered by limitations in sensing 

technology; unreliable algorithms for signal analysis and 

interpretation; and ineffective control strategies (Wu, Lance, & 

Lawhern, 2017). To address some of the challenges, proper 
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understanding of BMI sensing technology is required. 

The major challenge to the analysis of physiological signals 

has been the choice of feedback signals and their signal 

acquisition technology. The sensing stage quantifies brain 

activity such that it can be used to control a prosthetic limb or 

to mitigate neuro-motor disorders.  For effective neural 

recording ,cutting-edge techniques that access deep and distant 

regions of the brain are required (Ha et al., 2017). This has led 

to an upward trend in the development of miniaturized 

recording devices with high spatio-temporal resolution. A 

notable example of this is the encapsulated neural acquisition 

chip that records electrophysiological activities from the gyri 

and sulci of the brain (Ha et al., 2017). It provides a high 

spatiotemporal resolution, which could lead to having more 

insights into brain dynamics. Major breakthrough in 

understanding neurophysiological dynamics is dependent on 

advances in BMI data acquisition (Muraskin et al., 2017), 

because the first requirement towards achieving an efficient 

BMI detection algorithm is acquiring neural signals without 

compromising their quality. This is why various feedback 

signals are analyzed as well as signal acquisition techniques. 

The list is not exhaustive, nevertheless it presents the most 

prominent signal acquisition techniques in BMI applications. 

Several studies  have reviewed BMI applications  (Mudgal, 

Sharma, Chaturvedi, & Sharma, 2020), (Waldert, 2016), 

(Mohammed, Ahmad, Abdullahi, & Kabir, 2020). The work in 

(Mudgal et al., 2020),  reviews the applications of BMI in 

different fields and practical issues related to usability of 

BMI.  The review in (Waldert, 2016), possibilities and 

limitations of invasive and non-invasive methods to 

fully interface the brain. Further works have investigated on 

algorithms and paradigms  and having objective methods to 

compare various BMI technologies (Mohammed et al., 2020). 

This work provides a new dimension by focusing on sensing 

techniques and feedback signals that are obtainable from the 

brain, excluding external signals. Due to the level of 

invasiveness required for internal signals, most studies have 

focused on external signals. In addition, the review proposes 

future perspectives on sensing for BMI.

2. PERCEPTION ASSISTIVE SENSING 

 

These are signals that are used to help enhance sensory 

functions in patients with auditory, visual or any other sensory 

impairments. Stimulation is triggered using mainly signals 

external to the brain. This class consists of visual and auditory 

prosthesis like cochlear and retinal implants. Cochlear implants 

work by converting sound into patterns of electrical stimuli that 

are delivered using a collection of implanted microelectrodes to 

the auditory nerve fiberlying on the basilar membrane of the 

cochlea (Nicolelis, 2001). By substituting the percepts with 

sound and the neural system with the auditory nerve, Fig. 2 

summarizes the processing chain of a cochlear implant; which 

is a typical example of a BMI that enhances percepts. Sound 

enhancing prosthesis were the first successful prosthesis. They 

were developed as early as the 19th century by Miller 

Hutchinson as hearing aids (Mills, 2011). Making them the 

earliest BMIs to be commercially available. In 2013, the Food 

and Drug Administration (FDA) approved the first retinal 

implant (Greenemeier, 2013). Like the cochlear implant, the 

retinal implant uses decoded captured images as control signals, 

which are then used to stimulate the optical nerve through a set 

of electrodes (Costa e Silva & Steffen, n.d.). The retinal implant 

uses a similar processing chain to the cochlear implants as 

shown in Fig. 2. With the retinal implants, the percepts is vision 

and the neural system to be modulated is the optical nerve 

(Niketeghad & Pouratian, 2019). Work on retinal implants is 

still at its early stages, and they have shown a lot of promise; 

however, they are still grappling with low resolution, making it 

difficult for blind patients to use it for daily living activities 

(Luo & da Cruz, 2016). 

3. ACTUATION ASSISTIVE SENSING 

These consists of the group of neural signals used to rectify, 

restore and ameliorate external bodily functions, mainly motor 

disabilities. Fig. 3 depicts a BMI using brain signals to control 

a prosthetic limb. Prosthetic limbs like this restore grasp and 

gait abilities to seriously disabled patients, who may be totally 

paralyzed or those with severe neuro-motor limitations. In 

restoring bodily functions, more neural information can be 

obtained using innovative approaches having high spatio-

 
Fig. 2.  Processing chain of perception assistive BMI 

 

 
Fig. 3.  Actuation assistive BMI using brain signals to control a prosthetic limb 
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temporal resolution or techniques measuring multiple brain 

activities (Muraskin et al., 2017). In terms of neural activity 

measured, this review broadly classifies them into two 

categories: electrical and metabolic activity. The following is a 

brief description of the various modalities used in obtaining 

electrical and metabolic activity from the brain. 

3.1 Electrical Activity Sensing 

Neuro-electrophysiology has been used in studying bio-

electrical properties of brain cells and tissues. Notable among, 

was the revolutionary discovery by Hodgkin and Huxley in 

1952, on the initiation of action potentials in squid axons which 

eventually led to a Nobel Prize (HODGKIN & HUXLEY, 

1952). Later, there was the discovery by Hubel and Wisel in 

1977, about how individual neurons contribute to visual 

processing (Hubel & Wiesel, 1977). These ground-breaking 

studies set the pace in neuro-electrophysiology. In order to 

extract useful information from neuro-electrophysiological 

signals, a good understanding of how these signals are formed 

at the neural level is required. Generally, neuro-

electrophysiological signals represent the spiking behavior of a 

single neuron, a small neural ensemble and the mean potentials 

of a large neural ensemble. The larger the neural population, the 

higher the amplitudes as more neurons contribute additively to 

the signal.   

Neuro-electrophysiological signals are used for various 

applications in clinical settings. Primarily, they have been used 

in brain-machine interfaces as feedback signals. In BMI, 

implanted devices are used to record and decode brain signals, 

which are used in controlling external machines, like prosthetic 

limbs (Hochberg et al., 2006). Additionally, 

electrophysiological signals are used in localizing areas where 

seizures begin in both medically tractable and intractable 

epilepsy (Staba, Wilson, Bragin, Fried, & Engel, 2002). They 

have been proven to be good markers for movement disorders 

such as Parkinson’s disease (PD), essential tremor (ET) and 

dystonia (Little & Brown, 2012). Their use is extending to 

tracing neuropsychiatric disorders like obsessive compulsive 

disorder (OCD), dementia, attention deficit hyperactivity 

disorder (ADHD), Alzheimer's disease (AD), and 

schizophrenia (SZ) among others (Yener & Başar, 2013).  

Fundamentally, feedback signals should be selected based on 

their level of invasiveness, resolution, signal content, and 

clinical relevance. The selection of signals will ultimately 

depend on the design of the entire system in relation to the 

signal processing capability available. The following sections 

give a brief description of the sensing techniques and signals 

obtainable by electrical activity in the brain. 

 

3.11 Neuro-electrophysiological Recordings 
 

Intracellular recording is the measurement of voltage or current 

within the membrane of a cell. This is done by inserting an 

electrode in the cell and a reference electrode outside the cell. 

This could be done using a current or voltage clamp (Romain 

Brette et al., 2008). In a current clamp, current is injected 

through the intracellular electrodes and the resulting amplified 

membrane potential is measured. Whereas the voltage clamp 

holds the membrane potential at a fixed value and the current 

flowing through the intracellular electrode is measured. The 

major techniques used in intracellular recordings are 

measurements of current, potential and conductance. 

On the other hand, extracellular recording is the main method 

for measuring in vivo neural activity. For a single neuron, 

extracellular recording is achieved by placing an electrode close 

to the neuronal soma such that the firing rate of the neuron is 

measured by the number of spikes (Roman Brette & Destexhe, 

2012). Extracellular recording has been more prevalent due to 

its ability to provide neuronal activity, coupled with its relative 

ease of use compared to intracellular activity. Aside from single 

neuron activity, research is growing in the study of how a 

network of neurons influences various functions like cognition, 

movement and perception. These studies have mainly used 

extracellular recordings using multi-electrode arrays (MEA). 

Extracellular potentials provide information consisting of high 

frequency spiking activity (> 500 Hz), which stem from a 

number of neurons within the immediate vicinity of recording 

electrode and are termed multi-unit activity (MUA). And the 

low frequency potentials consisting of local field potentials 

(LFP). Fig. 4 presents the conventional set-up for measuring 

extracellular activity from a neural population. An ideal 

measurement technique is required to be able to provide activity 

of single neurons, at the same time providing whole brain 

activity, within a microsecond time scale (Roman Brette & 

Destexhe, 2012); which might only be achievable by combining 

recordings from various techniques. 

 

3.12 Unit Activity 
 

Using sharp extracellular electrodes as in Fig. 4, action 

potentials are generally extracted from a single neighboring 

neuron (single-unit recording) or from an unknown population 

of neighboring neurons (multi-unit recording) (Gold, Henze, 

 
Fig. 4. The basic set-up for measuring and analyzing extracellular neural 

signals (Lewicki, 1998). The set-up shows the low noise amplifier (LNA), 
band pass filter (BPF) and analogue to digital converter (ADC). 
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Koch, & Buzsáki, 2006). These are mostly high frequency 

extracellular potentials (>500 Hz). Single unit activity is used 

in understanding how a neuron responds to specific stimulus or 

to understand correlation between various neurons. This has led 

to their use in providing insight into patterned activity within 

the subthalamic nucleus (STN) and globus pallidus internus 

(GPi) in relation to movement, cognitive processes and 

memory; making them potentially suited as biomarkers for use 

in closed-loop deep brain stimulation (DBS). DBS is a tool used 

to mitigate pharmacologically intractable neurodegenerative 

diseases such as Parkinson's disease (PD), tremor and dystonia. 

As such, closed-loop DBS uses feedback signals to track 

changes in patient’s condition and correspondingly adjust 

stimulation so as to improve their condition. Closed-loop DBS 

is an instance of BMI. Nevertheless, they are hindered by 

recalibration (due to drift in neuronal properties), need for 

precision on target neuron and unreliability of recording over 

extended use (Little & Brown, 2012). Single neuron recordings 

represent certain movement features, nonetheless, they have 

higher sampling rate requirements, degradation at the neuron-

electrode interface and difficulty in maintaining recordings 

from the same neuron for extended periods of time. However, 

the difficulty in maintaining recordings has been as a result of 

the size of recording electrodes, which mostly picks up 

neuronal ensemble activity as against the required single unit 

activity (Buzsáki, 2004). This has necessitated the need for 

additional processing unit such as; spike sorting to aid in 

extracting single unit activities from multiunit activities. 

Compared to other neuro-electrophysiological signals, unit 

activities are useful in brain-machine interfaces (BMI) 

applications, since high spatial resolution is required. Spikes 

have been found to show a clear relationship to movement and 

behavioral functions as highlighted by their application in BMI 

for prosthetic limbs. This has led to their use as biomarkers for 

regulating stimulation in closed-loop DBS (Rosin et al., 2011). 

 

3.13 Local Field Potentials 
LFP are low frequency (<500 Hz) extracellular potentials 

obtained from sampling alocalized population of neurons. LFPs 

can simply be measured with a standard 

electroencephalography (EEG) amplifier connected to the 

implanted DBS electrode, and are generated by summated 

postsynaptic potentials resulting from excitation in basal 

ganglia and cortical neurons(Priori, Foffani, Rossi, & 

Marceglia, 2012). Unlike unit activity, they tend not to drift 

over time which makes them more reliable and stable (Buzsáki, 

2004).Because of their population-based nature, they are more 

informative, due to their time and frequency response; and offer 

a better trade-off between high spatial resolution (common in 

unit activity) and high spatial scale (common in global field 

potentials) than other neuro-electrophysiological signals. 

Another advantage of localized population of neurons is the 

long-term experience acquired by researchers in signal 

processing for EEG-like signals researchers have, particularly 

LFPs. Fig. 5 illustrates the region where LFP recording can be 

obtained. Also, LFP processing algorithms can be easily 

implemented on microchips, and are therefore ideal for use in 

implantable devices. Since LFP processing microchips have 

been adopted in several studies, using LFP means no additional 

work or procedures to be undertaken. This makes them ideally 

suited for many applications requiring neural signals for 

feedback. As biomarkers for closed-loop DBS, current evidence 

supports the hypothesis that LFP activity changes in response 

to the patient's clinical state. Basal ganglia LFPs oscillate in 

several frequency bands, ranging from; very-low frequencies 

(2–8 Hz), beta frequencies (8–20 Hz), alpha (20–35 Hz), 

gamma (60–80 Hz), and very-high frequencies (250–350 Hz). 

The most studied and debated LFP oscillations are beta 

frequencies because they seem to reflect the patient's motor 

state. Changes in beta LFP activity mainly reflect basal ganglia 

responses to dopamine and correlate with motor performance. 

As suggested, LFP have been found to be the prime 

candidates for closed-loop DBS. This is so, even though the 

exact mechanisms of DBS are still under debate, ample 

evidence shows that LFP oscillations in patients with 

Parkinson's disease and other neurological disorders requiring 

DBS are specifically modulated by DBS (Urrestarazu et al., 

2009). Notwithstanding, LFPs have their limitations, some of 

which are listed below:  

• There is evidence that LFPs correlate closely with 

the individual patient's motor status, but correlation 

across patients is yet to be established (Little & 

Brown, 2012).   

• Recent studies suggest that other activities like 

cognitive and behavioural functions might 

modulate LFP (Urrestarazu et al., 2009). 

• Abnormal oscillations reflect some sort of clinical 

impairment in patients, but direct relationships are 

yet to be established (Kühn, Kupsch, Schneider, & 

Brown, 2006). 

• Conversely, there is no correlation between beta 

band LFP and neuro-motor scores like the unified 

 
Fig. 5.  Candidate neuro-electrophysiological signals and their recording sites 

(Hebb et al., 2014). 
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Parkinson’s disease rating scale (UPDRS), making 

some studies to downplay its importance (Kühn et 

al., 2009). 

Generally, LFP has a relatively better correlation with neuro-

motor symptoms compared to other neuro-electrophysiological 

signals. Various clinical studies have employed it as a 

biomarker (Little et al., 2013)(Afshar et al., 2012)(Camara et 

al., 2015), and numerous computational studies have been 

concerned with its manipulation in subjects (Mohammed, 

Zamani, Bayford, & Demosthenous, 2017)(Mohammed & 

Demosthenous, 2018)(Grant & Lowery, 2011)(Santaniello, 

Fiengo, Glielmo, & Grill, 2011)(Rosenblum & Pikovsky, 

2004)(Omel‘chenko, Hauptmann, Maistrenko, & Tass, 

2008)(Lysyansky, Popovych, & Tass, 2011)(Franci, Chaillet, & 

Pasillas-Lépine, 2011).  

 

3.14 Global Field Potentials 
These are activities from a much larger population of neurons 

than LFP. Like LFPs, EEG measures the summed electrical 

activity of many neurons and is measured with electrodes at the 

surface of the scalp; though at a larger scale. Fig. 5 depicts the 

recording sites for EEG and Electrocorticography (ECoG) 

which are examples of global field potentials. From Fig. 5, it 

can be seen that EEG are subject to filtering due to propagation 

through various media such as the cranium, dura mater, 

cerebrospinal fluid and other surrounding tissue (Roman Brette 

& Destexhe, 2012). Due to this frequency filtering, action 

potentials are severely attenuated and are not visible on EEG 

electrodes.  

In addition, low frequency activities such as synaptic 

potentials dominate EEG signals, since they can propagate over 

large distances within the extracellular space. EEG recordings 

provide average activities of neurons on the order of 105 – 108 

(Rowland, Breshears, & Chang, 2013), this inhibits both their 

spatial and temporal resolution. On the other hand, ECoG can 

be used to overcome some of the shortcomings of EEG. ECoG 

measurements are made on the surface of the cortex as is shown 

in Fig. 5, which results in less filtering compared to EEG which 

is made on the scalp. Like EEG, ECoG measures the summated 

electrical activity of many neurons, to be precise, it uses the 

summation of between 102 – 103 neurons (Rowland et al., 

2013). This enables ECoG to record frequencies up to 200 Hz 

compared to the less than 70 Hz present in EEG (Schwartz, Cui, 

Weber, & Moran, 2006). Thus, EEG and ECoG literally make 

the same measurements, though EEG signals have poorer 

spatio-temporal resolution due to filtering by cortical tissue and 

their large coverage area. 

In BMI, higher frequency contents in signals mostly leads to 

more relevant information for decoding patient state and 

intentions; which are necessary for BMI control (Schalk & 

Leuthardt, 2011).  Due to the lower frequency-specific 

information content of EEG compared to other neuro-

electrophysiological signals, their long-term use as biomarkers 

may be unsuitable. Nevertheless, they relatively have a higher 

spatial scale compared to the other signals since they cover the 

whole brain; making them suitable for acquiring more general 

fluctuations in frequency information across the brain. This 

property makes them ideally suitable as complementary signals 

in BMI applications. As a result of this, EEG have found 

application in responsive stimulation for epilepsy. Their 

adoption in epilepsy makes them an option for PD applications, 
since epilepsy is a neurological disorder impairing movement 

and other behavioral functions just like PD. 

3.2 Metabolic Activity Sensing 

In BMI, hemodynamic or neuro-transmitter response could be 

used in obtaining vital brain information. In neuro-motor 

disorders, excitation and inhibition of neuronal signals occur as 

a result of stimulation and improvement in conditions. In 

addition, other secondary effects are, blood flow changes, 

modulation of neurotransmitters, neurogenesis and a host of 

other metabolic activities (Hess, Vaillancourt, & Okun, 2013). 

This makes the investigation of metabolic activity for BMI 

important. 

For hemodynamic response, blood releases glucose to active 

neurons at a higher rate than in the area of inactive neurons 

(Nicolas-Alonso & Gomez-Gil, 2012). The glucose and oxygen 

released to the blood stream results in an increase in 

oxyhemoglobin in the veins around the active region.  In DBS, 

hemodynamic changes in PD patients can serve as good 

biomarkers since DBS and PD induce cortical hemodynamic 

changes in patients (Bick et al., 2017). These changes can be 

detected by methods such as functional magnetic resonance 

imaging (fMRI), diffusion magnetic resonance imaging (dMRI) 

and near infrared spectroscopy (NIRS). Like in hemodynamic 

responses, the use of techniques that measure neuro-transmitter 

response is pertinent because most neuromotor disorders like 

PD, results in degeneration of cells that use dopamine as 

neurotransmitters (Schiff, 2012). Monitoring dopamine traces 

from cerebral metabolites have been reported (Little & Brown, 

2012), but miniaturization of chemical analysis is a major 

barrier.  

In addition to monitoring neurotransmitter and hemodynamic 

responses, responses to specific molecules are measured using 

optical micro-imaging techniques mostly by using fluorescence 

measurements. Recent advances in optical imaging techniques 

have led to single-cell resolution in functional neuroimaging 

which uses a two photon microscope (Helmchen & Denk, 

2005). Understanding pathological brain processes down to the 

single neuron level is necessary towards harnessing the ability 

of closed-loop DBS as well as BMIs to restore bodily functions. 

The advantage optical approaches have over other methods is 

that they have high spatial localization and are relatively less 

invasive (~ 1 – 2 mm in depth) compared to other methods 

(Takehara et al., 2015). However, their major shortcoming is 

their low temporal resolution compared to neuro-

electrophysiological methods. This is partly due to their high 

requirement for signal processing and data analysis (Schultz, 

Copeland, Foust, Quicke, & Schuck, 2017). Table I presents a 

summary of the major methods used in analyzing and obtaining 
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metabolic activity from the brain that can be used in BMI 

applications. 

3.21 Fluorescence Measurements 

Fluorescence measurements have a distinctive response to 

the presence of specific molecules like sodium, potassium or 

calcium. Fluorescent measurements of neuronal activity can be 

classified into two categories: those that are sensitive towards 

membrane voltage and those that detect changes in intracellular 

calcium concentration (Schultz et al., 2017). Sensors sensitive 

to membrane potentials produce relatively small signals in 

response to action potentials. Currently, calcium sensitive 

sensors are orders of magnitude more sensitive than sodium or 

potassium sensitive sensors. In principle, initiation and 

propagation of action potential can give rise to about a hundred 

times higher calcium concentration that under rest (Berridge, 

Lipp, & Bootman, 2000). This can be used to measure active 

and inactive neurons in the brain. 

3.22 Near-Infrared Spectroscopy (NIRS) 
NIRS uses optical spectroscopy based on infrared light to 

quantify changes in cerebral metabolism due to neural activity. 

Infrared light penetrates the human skull up to a depth of about 

1- 3 cm below the skull (Hong, Ghafoor, & Khan, 2020). This 

enables NIRS to measure concentration of oxyhemoglobin 

based on light attenuation (absorption and scattering)(Alt et al., 

2017). The shallow penetration of light makes it not very ideal 

for applications that monitor biomarkers in deep regions of the 

brain. Nevertheless, it is a promising diagnostic tool to 

investigate neurovascular coupling, for example in epilepsy to 

develop novel early seizure detection algorithms, because 

vascular changes occur about 100 milliseconds after the 

associated neural activity. Which is an acceptable temporal 

resolution for BMI applications (Coyle, Ward, & Markham, 

2007). In addition, it has a spatial resolution of within 1 cm. The 

major advantage of adopting optical modalities like NIRS and 

fluorescence measurements in recording neural activity is their 

high specificity, which will go a long way in facilitating artefact 

free BMI implementations. For example, NIRS has been used 

in DBS patients by Sakatani and colleagues (Sakatani, 

Katayama, Yamamoto, & Suzuki, 1999). The finding suggested 

that therapeutic benefits were reflected by changes in 

oxyhemoglobin levels in the prefrontal cortex. Despite its 

bulkiness, NIRS has been proposed as a suitable measure of 

neuronal activity due to its ability to accurately quantify 

neuronal activity which is reflective of symptom severity and 

has been proposed as a candidate signal to adjust the parameters 

of DBS in a closed loop configuration (Morishita et al., 2016). 

Applications utilizing this technology for BMI is still at 

infancy. Thorough studies using an acceptable number of 

patients that produce encouraging results are required, so as to 

establish its feasibility. 

 

3.23 Magnetic Resonance Imaging (MRI) 
MRI is an emerging technology for observing neural activity in 

the living brain. It has tremendous potential for use in 

applications like blood-oxygen-level-dependent (BOLD) 

functional magnetic resonance imaging (fMRI), which is a non-

invasive method for monitoring brain functions (Muraskin et 

al., 2017). Like NIRS, fMRI is a measurement based on 

TABLE I. COMPARISON OF POSSIBLE FEEDBACK SIGNALS AND SENSING TECHNIQUES FOR BMI (ADAPTED FROM (Mohammed, Bayford, & Demosthenous, 2018)). 

Electrical Activity 

Measurements 

Spike (Gold et al., 

2006), (Buzsáki, 

2004), (Rosin et al., 

2011) 

LFP (Urrestarazu 

et al., 2009), (Kühn 

et al., 2006) 

ECoG/iEEG (Rowland et 

al., 2013) 

EEG (Schwartz et al., 2006), (Schalk & Leuthardt, 

2011) 

Activity Measured Unit activity average potential of 
a localised neural 

population 

cortical or intracranial 
activity 

Electrical activity from scalp 

Temporal 

Resolution 

< 1 ms ~1 ms ~3 ms ~50 ms 

Spatial Resolution ~ 50 µm ~0.5 mm ~1 mm ~10 mm 

Level of 

Invasiveness 

Invasive Invasive Minimally invasive Non-invasive 

Practicability in 

BMI 

Implantable Implantable Implantable Bulky, but cheap 

Metabolic Activity 

Measurements 

Fluorescence 

Measurements 

(Schultz et al., 2017), 
(Berridge et al., 2000) 

NIRS (Alt et al., 

2017), (Sakatani et 

al., 1999) 

fMRI (Muraskin et al., 
2017), (Fouragnan et al., 

2015) 

FSCV (Lee et al., 

2007), (Chang et al., 

2013) 

Intracranial dialysis 

(Robinson et al., 2003) 

Activity Measured Ca2+, Na+ or K+ 

concentration in the 

brain 

Concentration of 

oxyhemoglobin 

blood-oxygen-level and 

molecular displacement of 

water 

Concentration of 

neurotransmitter 

(dopamine) 

Concentration of 

neurotransmitter 

(dopamine) 

Temporal 

Resolution 

~30 ms < 1 s ~1 s ~1 s ~1 s 

Spatial Resolution ~ 10 µm ~ 5mm ~1mm ~ 30 µm ~ 200 µm 

Level of 

Invasiveness 

Invasive Non-invasive Non-invasive Invasive Invasive 

Practicability in 

BMI 

Implantable (with very 

high data analysis 
cost) 

Bulky Bulky (a major hindrance is 

DBS devices are still MR 
conditional) 

Bulky (with high 

specificity and 
selectivity) 

Bulky (with high 

specificity and selectivity) 
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hemodynamic changes, and it offers a spatial resolution in the 

millimeters range. It has been shown to offer tremendous 

insights into the underlying dynamics of the human brain 

(Fouragnan, Retzler, Mullinger, & Philiastides, 2015). In 

addition, understanding the underlying mechanisms can give 

more insight as to why different patients’ brains respond 

differently to similar levels of stimulation. 

Aside from fMRI, the complex activity in the white matter of 

the brain can be captured with great detail using diffusion 

magnetic resonance imaging (dMRI) (Hagmann et al., 2006). It 

captures the molecular displacement of water within a voxel. 

This is used to deduce the location and direction of white matter 

tracts based on the directional diffusion of water. Changes in 

white matter fiber tract have been used to understand the 

internal working of the brain. The work in (Muetzel et al., 

2008), confirmed that changes in white matter fiber tract 

connection correlated with subject performance in specific 

tasks in healthy patients.  

 

3.24  Fast Scan Cyclic Voltammetry (FSCV) 
FSCV is a voltammetry technique that applies a linearly varying 

potential through carbon fiber microelectrodes (CFM), 

resulting in redox chemical reactions around the electroactive 

molecules (Lee et al., 2007). The concentration of analytes is 

measured by the magnitude of evoked current peaks to the 

redox reaction at the electrode surface. The relationship 

between the applied voltage versus the resulting current 

provides a chemical signature for the presence of certain 

neurotransmitters or analytes. FSCV detection is mainly limited 

to electroactive analytes; electroactive molecules like dopamine 

(a biomarker for PD), adenosine (a biomarker for sleep), and 

oxygen (which signifies the presence of anoxic brain injuries). 

The major limitations of FSCV are its bulkiness and that the 

lifetime of CFM is a few months, which restricts the application 

of FSCV detection to intraoperative approaches. For closed-

loop DBS, using an anesthetized rat model, the Mayo 

Investigational Neuromodulation Control System (MINCS) in 

(Chang et al., 2013), was interfaced to FSCV to wirelessly 

regulate stimulation as a proof-of-principle test for closed-loop 

DBS using neurochemical signals for feedback. 

 

3.25  Intracranial Micro-dialysis 
Micro-dialysis is the most commonly used method to measure 

the chemical concentration of analytes in the brain (Robinson, 

Venton, Heien, & Wightman, 2003). It uses a dialysis probe that 

penetrates very small molecules in the brain. The brain is 

supplied with artificial cerebrospinal fluid, the quantity of 

molecules that diffuse into the probe and the dialysate are 

collected and analyzed off-line. Its spatio-temporal resolution 

is not excellent because a certain amount of dialysate has to be 

collected before any analysis can be done; which impedes time 

resolution. However, it has a very high degree of chemical 

selectivity and sensitivity. Due to its poor temporal resolution, 

microdialysis can only be used to measure long term changes in 

analytes or neurotransmitter for use in closed-loop or BMI 

applications. Basically, its sensitivity and selectivity make it 

suitable for applications like home-based monitoring of PD 

patients. This could go a long way in reducing the frequency of 

face-to-face visits for patients with prosthesis or neuro-motor 

disorders. Table I summarizes some of the characteristics of 

various feedback signals that are suitable for BMI applications. 

In Table I, characteristics such as sensitivity and accuracy are 

not presented, since they change with application as well as the 

adopted feedback algorithms.  

3.3 Electrical versus Metabolic Activity  

For effective neural recording, cutting edge techniques that 

access deep and distant regions of the brain are required (Ha et 

al., 2017). These could lead to more insight in brain dynamics.  

Nonetheless, of equal importance are techniques that have 

spatial coverage. A major breakthrough in understanding 

neurophysiological dynamics is dependent on advances in 

neural signal acquisition (Muraskin et al., 2017). This is the first 

requirement towards achieving efficient BMI systems.  

Changes in the bio-chemical environment within the brain can 

be representative of intended actions and actual actions in 

patients. These characteristics make metabolic activity sensing 

suitable for quantifying neural activity. Notable example of 

techniques that measure bio-chemical activity are, NIRS, fMRI, 

intracranial dialysis, FSCV and fluorescence measurements. 

The use of metabolic activity as biomarkers have been 

investigated in (Morishita & Inoue, 2017). Their major 

shortcomings are safety concerns like MRI compliance and 

metal artifacts. However, some other metabolic activity sensors 

such as NIRS are not affected by metal artifacts, but have 

relatively poor temporal resolution compared to 

electrophysiological activity. Their size is a major impediment 

towards attaining fully implantable BMI systems. Generally, 

apart from sensitivity to metal artifacts in fMRI, metabolic 

activity offers many advantages compared to electrical activity 

recording, notably: absence of electrical noise, simultaneous 

imaging of a large number of neurons and selective recording 

from genetically-targeted regions of the brain (Kim & Jun, 

2013). Their high signal to noise ratio, specificity and 

selectivity can go a long way towards facilitating artefact free 

BMI systems. 

For electrical activity, information content is dependent on 

spatio-temporal resolution, with EEG and single unit activity on 

the extremes of the spectrum:  EEG has the highest spatial scale 

and the least temporal resolution, while single unit activities 

have the highest temporal resolution and the least spatial 

coverage. LFP and ECoG offer a compromise in terms spatio-

temporal resolution. Combined with their long-term stability at 

the electrode-tissue interface, this makes them very attractive 

feedback signals for applications in BMI (Little & Brown, 

2012). To use them as universal feedback signals, the valid 

question is how informative are they compared to other neuro-

electrophysiological signals? It is thus evident that the choice 

of feedback signals for BMI seems to be application dependent. 
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4 FUTURE TRENDS IN SENSING FOR BMI 

BMIs are rehabilitation tools in which neural functions are 

modulated through feedback that is triggered by either decoded 

external percepts or brain activities. To facilitate 

implementation of BMI, a wide range of neural signals that 

could be obtained using various signal acquisition techniques 

are required. Neural activity measurements consisting of 

metabolic and electrical activity are the preferred choice for use 

as feedback signals. Metabolic activity measurements are more 

selective, specific and quantifiable than electrical activity 

measurements. On the other hand, electrical activity has a faster 

response than metabolic activity. Of all electrical activity 

measurements, LFP has the optimal trade-off in spatio-temporal 

resolution as well as stability. This makes it a prime candidate 

for non-invasive BMI. 

The main aim of sensing in BMI is to provide sufficient 

information to the machine attached to the human brain, such 

that the patients’ use of bodily parts are improved. Prosthesis 

rejection is a major challenge in state-of-the-art BMI devices. 

This has mainly been as a result of poor feedback signals. 

Prosthesis should be biologically and sensorially implanted in 

the body to ensure better integration (Stephens-Fripp, Alici, & 

Mutlu, 2018). A number of studies have investigated the use 

prosthetic device for every day activity (Clemente, D’Alonzo, 

Controzzi, Edin, & Cipriani, 2016), (Antfolk et al., 2012). 

However, most of this have been done using an external 

computer under laboratory conditions. Translating research to 

real-life applications has been a major challenge of BMI 

applications. These has mainly been as a result of inadequate 

data acquisition and poor feedback signals (Wu et al., 2017). To 

obtain more useful information, BMIs should incorporate 

external and non-invasive sensing modalities such that a more 

comprehensive sensory information is obtained. This can be 

obtained by utilizing changes in temperature, vibration, 

mechanical pressure to augment other internal measurements 

obtained either from electrical and metabolic activity. Using, 

this kind of approach, simple feedback strategies can be used to 

implement BMI systems. Which could make the systems less 

computationally intensive and more suitable for chronic 

application. 

5 RECOMMENDATIONS 

If purely internal signals are required, BMI applications can 

adopt effective paradigms that combine both metabolic and 

electrical activity sensors for acquiring brain responses in real-

time which increases spatio-temporal resolution. This leads to 

better identification of disease and non-disease states in 

patients, as the level of information content is strictly dependent 

on spatio-temporal capabilities of the sensor. This 

complementary approach takes advantage of the best of both 

worlds: the fast response rate of electrical activity, and the 

slower more specific, selective and qualitative sensing offered 

by metabolic activity. The  complementarity of sensing 

electrical and metabolic activity have found application in brain 

machine interfaces (BMI) (Muraskin et al., 2017), (Jorge, van 

der Zwaag, & Figueiredo, 2014). Adopting completely internal 

sensing leads to more practicable implementations that are non-

invasive and less cumbersome. 

6 CONCLUSION 

Based on this review, it is clear that the major challenges of 

physiological signal analysis are: sensing devices and feedback 

signals. In BMI, feedback signals are required that clearly 

distinguish signals for different actions and intentions. These 

signals should be consistent across time and representative of 

various activities in subjects. Nevertheless, for this to be 

implemented fully, sensing devices that are implantable and 

non-invasive, as well as with optimal spatio-temporal 

resolution are required. By blending the right sensing 

modalities, BMIs have the potential to achieve the desired 

performance levels without impeding the patient’s quality of 

life. 
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